A CAUCHY PROBLEM FOR A NONLINEAR HEAT CONDUCTION
EQUATION ENCOUNTERED IN COMBUSTION THEQRY AND
GASDYNAMICS

P. F. Filtchakov and I. A, Draitsun UDC 536.2.01

We derive in explicit form a solution of a nonlinear heat conduction equation from combustion
theory, taking into account a standard equation of gasdynamics., Estimates of errors are
made for the desired expangions, thereby making it possible to estimate the accuracy of the
calculations, :

Many heat conduction problems may be reduced to the solution of nonlinear ordinary differential equa-
tions, solvable by the methods considered in [1], which includes a bibliography relating to this question,

It is of interest to study the class of problems reducible to nonlinear equations of parabolic type with
a divergent principal part, arising in various physical situations [2]. In particular, the class of equations
introduced here, besides the application pointed out in this paper, is encountered in problems of magneto-
gasdynamics, chemical kinetics, ignition problems, etc. We base consideration of the problems of the
type indicated on a study of the smoothness of the initial data of the problem.

We assume that in addition to heat conduction there will be an increase in the amount of material, the
speed of this material at a given point and a given instant of time being dependent on the existing density.
The coordinate x will be reckoned along the normal to the combustion front. We consider the equation

a, (4, x)—z% = —:;[‘I’(u, o)] + D, (x, u, ©) + O, {x, u) )

where we assume that the functions ay; ¥; &4, and &, are defined for all values of u and (7, x) of IIT, where
Ot = {(1,x): 0= 1 =T, x€Ep}, w= 9u/0x. We say that the solution u(r, x), defined for T €[0, T], lies
in IIT if, as a function of x, it belongs to fIT for each fixed 7 of [0, T]. In addition, we assume that in IIy,
except for some closed set containing at least one point with known coordinates, the coefficients in Eq. (1)
satisfy conditions of analyticity.

1. If we consider Eq. (1) in the gasdynamic approximation, i.e., when &, = 0, then the presence in
the equation of terms involving derivatives of the second order corresponds to taking account of viscosity
and heat conduction of the gas [3,4]. As is evident from Eq. (1), the class of viscosities may be considered
much broader than the eclass of linear viscosities, where there is not dependence of the limiting solution on
the concrete form of the viscosity, i.e., we consider a broad class of divergent viscosities which does not,
however, violate continuous dependence on the initial data, Thus for our problem we obtained a nonlinear
viscosity for a broad class of functions ¥(u, w) {3, 4]. Inview of the smoothness conditions imposed, the
divergent form of Eq. (1) can, with no loss of generality, be a different one. This is not the case for dis-
continuous solutions [3]. Therefore in the class of sufficiently smooth functions the domain of definition of
the functions ¥(u, w) may be widened.

2. Assume now that &4(x, u, w) = 0 and that &,(x, u) = 0; then Eq. (1) will correspond to the nor-
mal flame propagation process, where &, represents the speed of the reaction multiplied by the thermal ef-
fect of the reaction mentioned above. " '
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We note that in the case ¢,(x, u, w) = 0 and also in the case $,(x, u) = 0 the equation cbtained from Egq,
(1) is still not sufficiently accessible for study. Equation (1) includes as special caseg the nonlinear equa-
tion of normal flame propagation and also the nonlinear equation of gasdynamics with a divergent viscosity.

We consider Eq. (1) subject to the initial condition
U(x, T)fomo ==ty (x); X = (xy, ..., X,)EE,. 2)

We assume that ¥; $4; &, > 0. We assign to these functions the form most important to the applica-

tions:
Y (u, w):y(u)gi;d)l(x, 4, m):ﬁ(x)m. (3)
Oox ox

As can be seen, the right side of the second of Egs. (3) has a divergent form since it is obtained from the
standard equation of gasdynamics upon assuming that A(u) = de(u), i.e., that A(u)du is the total differential
of some vector function ¢(u). Here A(u) is the coefficient of the first derivative. Let ¢(u) be a sufficiently
smooth function of the argument u at each value u of IIT. When ¢(u) is an arbitrary nonconvex function, the
associated difficulties have not as yet been completely resolved. We assume therefore that 9%¢/ ou?
changes sign at a finite number of points. For ¢(u) we choose an arbitrary polynomial of the fourth degree.
This enables us, with a high degree of accuracy, to account for nonlinearities of the unknown function up
to the fourth order inclusive, i.e,,

¢ () = 2 by . ' (4)

Solely for the sake of convenience, in the function &,(x, u) we explicitly separate the thermal function
§, varying from point to point; we let '

@, (x, u) = 8 (x) D* (u). ()
In Eq. (5) the function &*(u) is considered to be defined in (0, <), positive and monotonically increasing in

this interval, which corresponds to the case of a large heat source, a characteristic property of a reaction;
in particular, we assume that *(u) = u®, where r.is an arbitrary positive number.

Taking into account Egs. (3) and (5) and the properties of the function ¢(u), for Eq. (1) we obtain

w@pm) 2 =2y 2] + 802 5o @r . ©®)

Let G* be a complex domain, We define uy(x) with the aid of an analytical transition in the domain G*
t t 1" i
in such a way that in G* we can display at least two sequences {yp}, yn — = and {yp}, yn — = such that
lim o(yy) # lim qo(yxnl). When we consider all sequences {yn}, yy — « for which {o(yp)} has a limit, then

n—

in accord with the general theory, we obtain

Jim M () A, My, (y) = max| uy (x) . (7
s Iny Jutol =t

We take A = 2. Then the solution of the Cauchy problem for Egs. (1) and (6) in the indicated formulation

exists and may be determined in a unique way for all the points of IIt.

On the basis of the smoothness conditions imposed on the coefficients of Egs. (1) and (6), and the con-
ditions (7), we construct an explicit solution of the Cauchy problem

u (xv T) — 2 a, (T) (x - xo)n (8)
n=0
for the case in which &? ¢/ 0 is of variable sign in the domain considered for variation of the arguments.
Here x,; is the point at which the combustion process is initiated.

Let py and cy, be the coefficients in the power series expansions of B(x) and §(x), respectively. Let
fh(x, 7) and ££' _(x, 7) denote the general terms of the sequences {ay(T)(x—-%)};° and {Dp(THx—%Xp)"}¢
with nonnegative integral indices. Suppose that, for each ¢ > 0, a number N > Ny > 0 can be found such
that for Njz > N and N* > N the inequality
N

S, @ x| < (9)

N

N* Nh ‘
| D@ ror = Y @) e
L] Q

k
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is satisfied. Assume, moreover, that for an arbitr%rv choice of the sequence of values Ny, N;, . . . , N,
1
.— = ag k — =, for the sequence of functions { 2 f]’i” (%, 7)}, with £ > 0 arbitrary and for a specific
=0
Ly = L*(€), the inequality "
Nk .
sup Lu(x, ¥ — 2 fr t)(<e o

dgi<r o

is satisfied, Inequality (10) must be satisfied for N > L* () for all T€[0, T]. Then dividing Eg. (6) by
a(u)B(x), on the left side of the equation we will have

Uy e =ty D, (V) (% — 5" (1)
T
N

k
Assume that analogous conditions are satisfied for the sequence of derived functions Z fl"l“ (X, 7) as
n=0 ’

Nk — . In this case, if {an(7)} and {an(7)} are arbitrary sequences of those enumerated, then, sub-
ject to the condition that B(x) belongs to the class C{n'}, we obtain the following expansion for the essential
noulinearity of Eqs. (1) and (6): ’
I
u (x)

2’ \ 2 el
2% (—a—”—) = 2% KR @E—x), (12)
dx / n=0

where
KO =aq @)+ Y ()+ 2 i (0K, S‘&)—e (),
=l

K (1) = (v); K@ (1) =, (7);

i ]
K (@) = (n+ Dy () — 201+ 1=t (©) 2, (1) A0
k=1

=t

A, (1) = (8, () 7% Ay (= — A (1) A2, (1) Z‘O a, (1) Py_y-
s==1 p=

Analogous expansions are also obtained for the other terms in Eq. (6). We obtain, as a result, the
following denumerable system of nonlinear differential equations:

oD (1) — X8 (1) (29 Ka £ (9 + Zoiins G 4+ (1 Dtana (D (9)
: =]

4 Y\ , . 3
— 2 W () — -*—p: 2 (n+1—i)n+2—ia,, i@ EpiF,‘,ﬂi
S =l =1

i=

+ 3 D (@) g+ (o D+ 2) (o), 13)
i=9D =D ©b
e, (M=o, (n=0123 ...} (14)
where ‘
v, (T :
Wi () = —ﬁ;ﬂ OFSL (1 L =) a, () 2 a(%) CiY (),
o =l

. {15
C, (1) = 8, (% Co(m) = —Co(®) 2, a, (1) Cils(3).

s=1
The structure of Fy coincides completely with that of Eq. (15), but involves terms of a polynomial which are
constaut and known, Klf +1 _i(T) is determined from the series of equations (12). In Eq. (14) the agn are
the coefficients in the expansion of ug(x}.
We point out now an especially important particular case [3, 4] for the equations of gasdynamics. On
a graph of @(u) let us fix two points, utand u-. For u(x, 7) we construct from [u*, u”] a function £ (u) from
the class of functions satisfying the condition

Clup o ) = Llu s ) — (u; — ) == <0, (16)
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and coinciding with ¢(u) at the points u = wrandu= u”, these functions being the smallest of all the func-
tions which satisfy the condition ¢ (u) = ¢(u) on the interval [u*, u™]. It is obvious that in this case tan o
= 0, where « is the angle of inclination to the u axis of the chord joining the points of intersection of the
graphs of the functions gp{u) and ¢(u). In this ease the denumerable sysiem of nonlinear equations is a
special case of Egs. (13)-(14) which we shall not write out here,

The series (8) is uniformly convergent by virtue of the restrictions (7) imposed on the order of growth
of uy(x) and by virtue of the smoothness conditions imposed on the coefficients of Egs. (1) and (6). We give
an a priori estimate of the convergence of the series (8) for the case of a very weak nonlinearity of Egs. (1)
and (6), excluding from this the nonlinearity (12). Then upon extending the unknown terms into the domain
G* and integrating them term by term [5], we obtain

o (e —x, 1) <U*(r>exP[_ Ot iz—;xlsvl—wll"} +Uy (A, €, an
| —_
o < Y I T B ‘
tf(( X T < ﬂ(t)exp[ vp{l 2+g)v.\711%1_{1__¢£1n(1\m €*), {18}
where
I3
[/*(T):_,-—«YA,.E_—__.."—-IJ*(’C):—"~(2L8)——~
Vi —ipe v V (%:W

Here p= p(e, d, T, sup|s(x)|) = const > 0; ¢ is the Holder exponent for the coefficients in Gy; 6 is a posi-
tive constant characterizing the parabolicity of the equation obtained after eliminating the nonlinearity (12):

Ci{z=1(2p Xy ..., 2%,); |2, — x| <V —o0<x< o0, 0 <1y KT, LT

7y = x Ay b =§ iy

An is a correction on the nonlinearity; C* is an upper-bound fo the analytic pariial integrals obfained from
the right side of Eq. (8),

S(x) = E Folx—x)m.
) hn=0

Based on these estimates, we can, with the aid of the series (8), guarantee an arbitrary preassigned
accuracy. To do this, we assign a value of the difference A* between the left side and the right side of Eqs.
(1) and (6) at the point x,. We then make a check of the accuracy with respect to the equation as x — «.
Upon satisfying the condition A* > §* (&* = const > 0), we calculate new initial data at the point xj, subse-
quent to which the whole process may be repeated. As the points x; approach the singular point, Ax; gra-
dually diminishes and tends towards zero, The number of terms of the polynomial in the transition from
point to point may vary. To improve convergence we can employ analytic continuation and, by analogy with
{1], consiruct the sequence of series

U= Z a, (0 (x— x)"s a, (t) =alP (v); xp =
n=0
with center at the points x = X(;; X = x(',' s ..., etc., which converge faster than the unknown series. Upon
effecting the transition from point to point, the transition modulus {5] will satisfy

Do, 13 ) . (19)

0 (xg)—0 (x))] < Z, [ sup ful + 1_0_ T (Ym X, Q‘i>+ V(x, u, © ¥o)
£ ox ax 24e

0¥ (X0, X1)

From inequality (19) the modulus of continuity of derivatives of much higher order in I [,T] readily follows.
Here .

0w ) O»
P( L X — = — V(X 8, 0, V)=V, 0, )t Vs (x, w o)
\“?n X 0x> 7B 1) x ( Yo) 1(' Vo
1 Ou \2
, 0, P)=2y —— | —|
Vilu, ©, %)=2v, B () ( 5)()

V, is a nonlinear function of its arguments,

As a consequence of the form of V;, inequality (19) holds even with all the nonlinearities of Eqs. (1)
and (6) present. It is obvious that inequalities (17)-(19) remain valid even for the functions ¢ (u).
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Let us write the system (13) in the form

aoDn(r)zgiai(r)K§5’(r)+(n+l)an+1(r)v(r)—2 W) (xy — FP) (v) + pD- (n1) (14+2) @y, (2), (20)
i=1 =

where
K(s) ()= 2Y0Kn+l—-t (T + anyy (T);

F®) (1)= }_‘(n+1~—o<n—l—2—t) nsas (1) Zm& Em N o0() 0

i=0

We consider, according to [6], the system of differential equations I-I*[an( T}, Ax], depending on a
parameter and defined by the equation

H*[a, (¥), 1]=a,D, (1)— 2 ia; (Y KP (1) —(n+1) apyy (D 0 (7)

i=1

+2ws‘,’ () + F®) 'p (1) (1 42) a0 (1), 1)

0
i=1

The operator H*[an(7), 1] naturally includes the initial unknown system of functions
Ogs Og25 +ovy O, ..., here OLA* LI (22)

Assume now that for A* = 0 the system Hx[ay (1), A*] has the obvious solution afl( 7). We seek a solution of
the system

H*[a, (1), ] =0 (23)

as a function a, (7, A*) of the parameter A*. In determining the initial approximation it is sufficient to find
an(7, A*) approximately as a function of A*., By virtue of the analyticity of the Cauchy problem for Egs.
(1) and (6), the differential operator, defining the system of differential equations H*[a,(7), A*], will pos-
sess adequate smoothness, therefore an(7, A¥), as a function of the parameter A*, must satisfy the differ-
ential equation

dH* [an (T, M), 7»*] da, (7, 2*) N dH* [an (T, A%), 7»*]

da, (T @ I =0 @4
subject to the condition
a, (v, 0)=d(3). (25)
To construct an approximate solution auy(7, A*) as a function of the parameter A*, we use Euler's broken
line method. Subdividing the domain of variation of A* into m parts by the points Ao =0< M <. <A
= 1, we obtain initial approximations for initiating the iterational process
dH*Ja, (T, A} -1 dH*[ (’C AR 7»*]
a, (T, 7L+1) a, (AH)— {_ELE(—?»*_)-)]_ 7‘;-*} —_— T (Af— M) (26)

Since the element a,(7, A*) is close to the exact solution of the system (20), and consequently also to
that of the system (13)-(14), we choose it for the initial approximation, denoting it by an, o{T» M +1) after
which the iterational process converges rapidly. Further, from the system (20) we form a sequence of
linear systems, We seek an approximate solution [6] for each system of this sequen)(k:e, The approximate
solutions of each linear system will determine successive approximations ay (7, Aj+1), which will tend
to the exact solution an(T). Applying Saidel's method to solve each linear system, we obtain the desired
iterational process from the sequence of linear systems:

[%Dn,k (r)~2 00, (1) K& (1) — (1 1) G (1) 0, (2)

i=]

Qn, e 11 (T)=A* {an,k (v dad(r)

¥ E Wi @) + Fl (1= I (0 1) (42) aniaa 0
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[oco .k (T) ——E i, (t) K k(1) —(n41) anpr, (1) 0 (T)
i=1
& E W (@ + FOa— T (nt1)(nt2) an+z,k<r>]—aoDn,k<r> (27)

0
i=]

n

+ E 10k (DK (1) + (n+ 1) Gngr, e (T) 0, (1) — 2 W, (1) — F&, 1)+ 2o - O (4 1)(n+2) anys, k(r)}
=] i=l1

In proceeding, we denote the expression appearing within the braces by b*(7).

Based on the smoothness of the functions defining the system, the process (27) converges more rapid-
ly than a geometric process. Moreover it is obvious thai for the desired iterational process

a1 (T) — @ (N < (g + 6,)] an,k (v}~ a, (7). ' (28)

Taking relations (27) and (28) into account, we obtain finally [6]

;ja:.k_H (T) —d, (T)H <

i q “an-k (f) —da, (T)” + I ! HIZ,, k-1 T) —a, II (29)

Here ap(7) are the exact solutions of the corresponding linearized systems, As is evident from the condi-
tions placed on uy(x) and the coefficients of Eqs, (1) and (6), the operator A*, which describes the iteration-
al process (27), has an adequately smooth derivative at the point ay,( 7). This enables us to write down for
the system (20) formulas for speeding up the convergence analogous to L. A. Lyusternik's formulas for
linear systems. Namely, if we consider

[@nk (¥) — @kt (1) Gn,k (T) — O ()]
[an, 41 (0208 (1) + Gn, e (T Qe (T)—Grp1 (0]

a, (1) =~ tn x (1) — [Un,k‘ﬂ (t) —anz (T)] , (30)
we obtain, with reference to the iterants an x4(7); an,k(7), and en k+4(7), 2 more accurate value of Zn( 7)
than ay k+4(7).

The question of the stability of the solution of the Cauchy problem for Eq. (1) for the function ¢ {u) and
for , = 0 was studied in (3, 4]. For the case ¢; = 0, this problem was the subject of many investigations,
in particular [3, 7]. For the case when ¢, # 0 and &, = 0, simultaneously, the stabilization is equivalent
to the existence of a function w*(x) for which the following conditions are satisfied:

luix, 1) —w*(x,)|<<e, asonly |x— x| <8, (31)

where 6 is independent of x;, in each finite domain of the space Ep. To show this, we differentiate Eqs. (1)
and (6) successively with respect to x, taking relation (7) into account, and thus obtain the inequality (31).

From the statement above, u(x, 7) is defined for 7€[0, T]. A unique solution w(x, 7) may be derived
which is defined for 7€ [0, T + A¥], A* and is such that u(x, 7) =w(x, 7) for 7€ [0, T]. Then y{x, 7) is an
extension of the solution u(x, ) to the point T + A*. In order for the desired solution to be continuable in
the natural norm it is necessary that for its derivatives of orders p+1, ..., ¢ on the finite interval {0, T},
a fine constant R(T) can be found so that for the derivatives of the solution the following condition is satis-
fied [5]

ou (x, 7)

L <SR, p I g (32)
dx

Taking into account the smootheness in our problem and successively applying the condition (32), we can
extend u(x, ) onto an arbitrarily preassigned interval,

We now consider the case of a domain where the point x; changes its position as the time varies (8,
9]. In this case the series (8) assumes the form

u(x, T}:EGn () [x— % ()] (33)
n=0
We speak of the series (33) as an "instantaneous" series since it becomes the series (8) if, beginning with
some instant 7y, the motion of the point x; is terminated, Theén when the conditions (7) and (9)-(10) are
imposed, the right side of the system (17) stays the same while the left side assumes the form 9]
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atDi (v) = o, [Dn (@ — -+ 1),y @ —d—"fh@—} ) (34)

In view of the fact that xy(7) is an arbitrary smooth function (except for x;(1) = 1), the point X, may change
its position in an arbitrary way. Ina given case the inequality (31) shows that at each point at a distance of
%i(7) from the plane, a definite value of the temperature is established in the course of time.

In this paper in carrying out the calculational algorithms we used the following numerical character-
istics: y(u) = youm, i.e., in the form of a rapidly changing function of temperature: by = 16; by = 0; by = 3/2;
by = ~2/3; by = 0.25.
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